次の関係式を満たす関数 \(f(x) \) がただ 1 つ存在するように、定数 \(a \) の値を求めよ。

\[
f(x) = ax + \frac{1}{4} \left(\int_0^\frac{x}{2} f(t) \sin t \, dt \right)^4
\]
解答解説のページへ

曲線 $C : y = \sin x \left(0 < x < \frac{\pi}{2} \right)$を考える。$C$ 上の点 P における C の法線を l とする。

(1) 法線 l が点 $Q(0, 1)$を通るような点 P がただ1つ存在することを示せ。

(2) (1)の条件を満たす点 P に対し、直線 l 曲線 C 直線 $y=1$で囲まれる部分の面積を S_1 とし、直線 l 曲線 C x軸で囲まれる部分の面積を S_2とする。S_1 と S_2 の大小を比較せよ。
解答解説のページへ

曲線 $C : y = e^x$ 上の異なる 2 点 $A(a, e^a)$, $P(t, e^t)$ における C のそれぞれの法線の交点を Q として, 線分 AQ の長さを $L_a(t)$ で表す。さらに, $r(a) = \lim_{t \to a} L_a(t)$ と定義する。

(1) $r(a)$ を求めよ。

(2) a が実数全体を動くとき, $r(a)$ の最小値を求めよ。
4

2次正方行列 \(P = \begin{pmatrix} p & q \\
 r & 1 \end{pmatrix} \) について、次の問いに答えよ。

(1) \(P \) が逆行列をもたなければ、\(\begin{pmatrix} q \\
 1 \end{pmatrix} = k \begin{pmatrix} p \\
 r \end{pmatrix} \) となる \(k \) が存在するか、または
\[
\begin{pmatrix} p \\
 r \end{pmatrix} = \begin{pmatrix} 0 \\
 0 \end{pmatrix}
\]
であることを示せ。

(2) 条件 \(A^2 = O \)。\(A \begin{pmatrix} p \\
 r \end{pmatrix} = \begin{pmatrix} q \\
 1 \end{pmatrix} \) を満たす2次正方行列 \(A \) が存在するとき、\(P \) は逆行列をもつことを示せ。

(3) \(A = \begin{pmatrix} 2 & 4 \\
 -1 & -2 \end{pmatrix} \) のとき \(A \begin{pmatrix} p \\
 r \end{pmatrix} = \begin{pmatrix} q \\
 1 \end{pmatrix} \) となるような \(p, q, r \) を1組求め、\(P^{-1}AP \) を計算せよ。
実数 a に対して，曲線 C_a を方程式 $(x-a)^2 + ay^2 = a^2 + 3a + 1$ によって定める。

(1) C_a が a の値と無関係に 4 つの定点を通ることを示し，その 4 定点の座標を求めよ。

(2) a が正の実数全体を動くとき，C_a が通過する範囲を図示せよ。
問題のページへ

条件より，

f(x) = ax + \frac{1}{4} \left(\int_0^{\frac{\pi}{2}} f(t) \sin t \, dt \right)^4

なので，

c = \int_0^{\frac{\pi}{2}} f(t) \sin t \, dt とおくと，

f(x) = ax + \frac{1}{4} c^4

すると，

c = \int_0^{\frac{\pi}{2}} \left(at + \frac{1}{4} c^4 \right) \sin t \, dt = \left[-\left(at + \frac{1}{4} c^4 \right) \cos t \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} a \cos t \, dt

= \frac{1}{4} c^4 + a \left[\sin t \right]_0^{\frac{\pi}{2}} = \frac{1}{4} c^4 + a

よって，

c - \frac{1}{4} c^4 = a \ldots \ldots (*)

ここで，

g(c) = c - \frac{1}{4} c^4 とおくと，

\[g'(c) = 1 - c^3 = -(c - 1)(c^2 + c + 1) \]

\[\lim_{c \to -\infty} g(c) = \lim_{c \to -\infty} g(c) = -\infty \] より，(*)を満たす c^4 がただ 1 つ存在するのは，次の 2 つの場合がある。

(i) c がただ 1 つ存在するとき

\(g(c) \) の増減より，\(a = \frac{3}{4} \)

(ii) 絶対値が等しく，符号の異なる 2 つの c が存在するとき

\(\alpha \neq 0 \) として，\(g(-\alpha) = g(\alpha) \) とおくと，

\[-\alpha - \frac{1}{4} \alpha^4 = \alpha - \frac{1}{4} \alpha^4\]

よって，\(\alpha = 0 \) となり，不適である。

(i)(ii)より，\(a = \frac{3}{4} \)

[解 説]

(ii)の場合を忘れがちですが，\(c^4 \) という設定は，この場合の検討を要求しているように思われます。
2
(1) $C: y = \sin x$ に対して，$y' = \cos x$ なので，

$P(t, \sin t)$ における法線の方程式は，

$$y - \sin t = -\frac{1}{\cos t}(x - t)$$

$Q(0, 1)$ を通ることより，$1 - \sin t = -\frac{1}{\cos t}(-t)$

$\cos t(1 - \sin t) - t = 0$ しり

ここで，$f(t) = \cos t(1 - \sin t) - t$ とおくと，

$$f'(t) = -\sin t(1 - \sin t) - \cos^2 t - 1$$

$0 < t < \frac{\pi}{2}$ より，$0 < \sin t < 1$ なので $f'(t) < 0$ となる。

これより，$f(t)$ は単調減少し，$f(0) = 1$，$f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$ から $f(t) = 0$ はただ 1 つの解をもち，法線が点 Q を通るような点 P はただ 1 つ存在する。

(2) 直線 l，曲線 C, y 軸で囲まれる部分の面積を S_3 とおくと，

$$S_1 + S_3 = \frac{\pi}{2} \times 1 - \int_0^{\frac{\pi}{2}} \sin x \, dx = \frac{\pi}{2} - 1$$ しり

また，(*)の解を $t = \alpha$ とおくと，$P(\alpha, \sin \alpha)$ から，

$$l: y - \sin \alpha = -\frac{1}{\cos \alpha}(x - \alpha)$$

x 軸との交点は，$-\sin \alpha = -\frac{1}{\cos \alpha}(x - \alpha)$ より，$x = \sin \alpha \cos \alpha + \alpha$ となり，

$$S_2 + S_3 = \frac{1}{2}(\sin \alpha \cos \alpha + \alpha) \times 1 = \frac{1}{2}(\sin \alpha \cos \alpha + \alpha)$$ しり

$①②$ より，$S_2 - S_1 = \frac{1}{2}(\sin \alpha \cos \alpha + \alpha) - \frac{\pi}{2} + 1$

ここで，(*)から，$\cos \alpha(1 - \sin \alpha) - \alpha = 0$，$\sin \alpha \cos \alpha + \alpha = \cos \alpha$ なので，

$$S_2 - S_1 = \frac{1}{2} \cos \alpha - \frac{\pi}{2} + 1 = \frac{1}{2}(\cos \alpha - \pi + 2) < 0$$

よって，$S_1 > S_2$ である。

[解 説]
点 P の座標は求まりませんが，このことは P の x 座標である α の条件として回避できます。その条件を，面積の大小関係の決定につなぐわけです。
3

(1) C : $y = e^x$ より，$y' = e^x$

A(a, e^a) における法線の方程式は，

$y - e^a = -\frac{1}{e^a} (x - a) \ldots \ldots \text{①}$

P(t, e^t) における法線の方程式は，

$y - e^t = -\frac{1}{e^t} (x - t) \ldots \ldots \text{②}$

②より，$y - e^a + e^a - e^t = -\frac{1}{e^t} (x - a + a - t)$

①を代入すると，$-\frac{1}{e^a} (x - a) + \frac{1}{e^t} (x - a) = e^t - e^a + \frac{1}{e^t} (t - a)$

$x - a = -e^a e^t - e^a \frac{t - a}{e^t - e^a}$

さて，条件より，$L_a(t) = \sqrt{(x - a)^2 + (y - e^a)^2} = \sqrt{(x - a)^2 + \frac{1}{e^{2a}} (x - a)^2}$

$= \sqrt{1 + \frac{1}{e^{2a}}} |x - a|$

ここで，$\lim_{t \to a} |x - a| = \lim_{t \to a} \left(e^a e^t + e^a \frac{t - a}{e^t - e^a} \right) = (e^a)^2 + e^a \cdot \frac{1}{e^a} = e^{2a} + 1$ から，

$r(a) = \lim_{t \to a} L_a(t) = \sqrt{1 + \frac{1}{e^{2a}}} (e^{2a} + 1) = \sqrt{(e^{2a} + 1)^3}$

(2) $e^{2a} = s > 0$，$f(s) = \left(\frac{s + 1}{s} \right)^3$ とおくと，(1)より，$r(a) = \sqrt{f(s)}$ となる。

$f'(s) = \frac{3(s + 1)^2 s - (s + 1)^3}{s^2} = \frac{(s + 1)^2 (2s - 1)}{s^2}$

右表より，$f(s)$ は最小値 $\frac{27}{4}$ をとるので，

$r(a)$ の最小値は $\sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2}$ である。

[解 説]

計算量が多いので，少し工夫をしています。なお，$\lim_{t \to a} \frac{t - a}{e^t - e^a}$ は，微分係数の定義を利用して，極限値を求めています。
4

(1) \(P = \begin{pmatrix} p & q \\ r & 1 \end{pmatrix} \) に対して、\(P^{-1} \) が存在しない条件は、\(p - qr = 0 \) \(\cdots \cdots (\ast) \)

(i) \(r = 0 \) のとき \((\ast) \) から \(p = 0 \)

(ii) \(r \neq 0 \) のとき \((\ast) \) から \(q = \frac{p}{r} \) となり，

\[
\begin{pmatrix} q \\ 1 \end{pmatrix} = \frac{1}{r} \begin{pmatrix} p \\ r \end{pmatrix}
\]

よって，\(k = \frac{1}{r} \) とおくと，\(\begin{pmatrix} q \\ 1 \end{pmatrix} = k \begin{pmatrix} p \\ r \end{pmatrix} \) となる。

(2) 条件より，\(A \begin{pmatrix} p \\ r \end{pmatrix} = \begin{pmatrix} q \\ 1 \end{pmatrix} \cdots \cdots (1) \)

両辺に左から \(A \) をかけて，\(A^{2} \begin{pmatrix} p \\ r \end{pmatrix} = A \begin{pmatrix} q \\ 1 \end{pmatrix} \) となり，\(A^{2} = O \) から，

\[
A \begin{pmatrix} q \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdots \cdots (2)
\]

さて、ここで \(P^{-1} \) が存在しないと仮定すると、(1)から，

(i) \(\begin{pmatrix} p \\ r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \) のとき \(A \begin{pmatrix} p \\ r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \) となり，(1)に反する。

(ii) \(\begin{pmatrix} q \\ 1 \end{pmatrix} = k \begin{pmatrix} p \\ r \end{pmatrix} \) のとき \(A \begin{pmatrix} q \\ 1 \end{pmatrix} = kA \begin{pmatrix} p \\ r \end{pmatrix} \) となり，(1)(2)から \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} = k \begin{pmatrix} 0 \\ 0 \end{pmatrix} \)

すると，\(k = 0 \) となり，(1)に反する。

(i)(ii)より，\(P \) は逆行列をもつ。

(3) \(A \begin{pmatrix} p \\ r \end{pmatrix} = \begin{pmatrix} q \\ 1 \end{pmatrix} \) より，

\[
\begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} p \\ r \end{pmatrix} = \begin{pmatrix} q \\ 1 \end{pmatrix}
\]

\(2p + 4r = q \cdots \cdots (3) \), \(-p - 2r = 1 \cdots \cdots (4) \)

\(34 \) より，\(q = -2 \) であり，このとき\(3 \)と\(4 \)は一致する。

そこで，\(r = 0 \) とすると，\(p = -1 \) となり，

\[
P = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}, \quad P^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}
\]

よって，\(P^{-1} AP = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)

[解 説]

(1)は(2)の誘導ですが、この利用の方法が本問のポイントとなっています。
5

(1) \(C_a : (x - a)^2 + ay^2 = a^2 + 3a + 1 \) および, \(x^2 + ay^2 - 2ax - 3a - 1 = 0 \)
\((y^2 - 2x - 3) a + (x^2 - 1) = 0 \) である \(① \)
どんな \(a \) に対しても \(① \) が成立する条件は、
\(y^2 - 2x - 3 = 0 \) である \(② \), \(x^2 - 1 = 0 \) である \(③ \)
③より, \(x = \pm 1 \)
\(x = 1 \) のとき \(② \) より \(y = \pm \sqrt{5} \), \(x = -1 \) のとき \(② \) より \(y = \pm 1 \) となり, 定点の座標は、
\((1, \sqrt{5}), (1, -\sqrt{5}), (-1, 1), (-1, -1) \)

(2) \(a > 0 \) のとき \(C_a \) が通過する点 \((x, y) \) は, \(① \) が \(a > 0 \) の解をもつ \((x, y) \) である。
(i) \(y^2 - 2x - 3 \neq 0 \) のとき
①より, \(a = -\frac{x^2 - 1}{y^2 - 2x - 3} > 0 \) から,
\(-(x^2 - 1)(y^2 - 2x - 3) > 0 \)
\((x + 1)(x - 1)(y^2 - 2x - 3) < 0 \)

(ii) \(y^2 - 2x - 3 = 0 \) のとき
①より, \(x^2 - 1 = 0 \)
(1) から, \((x, y) = (1, \pm \sqrt{5}), (-1, \pm 1) \)
(i)(ii)より, \(C_a \) が通過する範囲は右図の網点部となる。
ただし, 黒丸以外の境界は含まない。

[解 説]
曲線の通過領域を実数解条件として値点する範囲問題です。①式がパラメータ \(a \) についての 1 次式なので, 複雑な処理は必要ありません。なお, 領域図示の過程は省きましたが, 原点は不等式を満たさないので, その隣接領域からはじめて, 市松模様に
網点をつけています。