解答解説のページへ

円周を 12 等分するように点 A_1 , A_2 , A_3 , …, A_{12} が時計回りに並んでいる。また, 白球 2 個と黒球 4 個が入った袋がある。点 P を, 次の操作によって 12 個の点上を移動させる。

操作:袋から球を1つ取り出した後にサイコロを投げる。白球ならば時計回りに、 黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。取り出し た球は袋に戻さないこととする。

P を最初に点 A_1 に置く。操作を 1 回行い,P が A_1 から移動した点を Q とおく。続けて操作を 1 回行い,P が Q から移動した点を R とおく。もう一度操作を行い,P が R から移動した点を S とおく。

- (1) $R = A_1$ となる確率を求めよ。
- (2) 3 点 Q, R, S を結んでできる図形が正三角形となる確率を求めよ。

解答解説のページへ

座標平面において、原点 O と点 A(1, 0) と点 B(0, 1) がある。 0 < t < 1 に対し、線 分 BO, OA, AB のそれぞれをt:(1-t) に内分する点を P, Q, R とする。

- (1) $\triangle PQR$ の面積を t の式で表せ。
- (2) $\triangle PQR$ が二等辺三角形になるときの t の値をすべて求めよ。
- (3) $\theta = \angle RPQ$ とする。(2)のそれぞれの場合に $\cos \theta$ を求めよ。

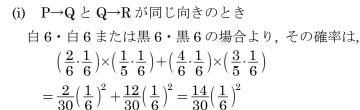
解答解説のページへ

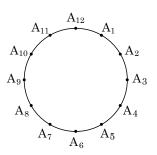
次の問いに答えよ。

- (1) a を実数とする。 y = ax のグラフと y = x | x 2 | のグラフの交点の個数が最大となる a の範囲を求めよ。
- (2) $0 \le a \le 2$ とする。 S(a) を y = ax のグラフと y = x|x-2| のグラフで囲まれる 図形の面積とする。 S(a) を a の式で表せ。
- (3) (2)で求めたS(a)を最小にするaの値を求めよ。

問題のページへ

(1) まず, 点 P を A_1 に置き、与えられた操作を行い、 $P \rightarrow Q$ 、 $Q \rightarrow R$ と移動して、R が A_1 に一致するのは、





(ii) P→Q と Q→R が逆向きのとき

整数 $k(1 \le k \le 6)$ に対し、白 $k \cdot \mathbb{R}$ または \mathbb{R} または \mathbb{R} から もの場合より、その確率は、

$$\left(\frac{2}{6} \cdot \frac{1}{6}\right) \times \left(\frac{4}{5} \cdot \frac{1}{6}\right) \times 6 + \left(\frac{4}{6} \cdot \frac{1}{6}\right) \times \left(\frac{2}{5} \cdot \frac{1}{6}\right) \times 6 = \frac{48}{30} \left(\frac{1}{6}\right)^2 + \frac{48}{30} \left(\frac{1}{6}\right)^2 = \frac{96}{30} \left(\frac{1}{6}\right)^2$$

(i)(ii)より、
$$R = A_1$$
となる確率は、 $\frac{14}{30} \left(\frac{1}{6}\right)^2 + \frac{96}{30} \left(\frac{1}{6}\right)^2 = \frac{110}{30} \left(\frac{1}{6}\right)^2 = \frac{11}{108}$

(2) $P = A_1 \rightarrow Q$, $Q \rightarrow R$, $R \rightarrow S$ と移動するとき, $\triangle QRS$ が正三角形となる確率は, 整数 $k(1 \le k \le 6)$ に対して,

(i) 白
$$k \cdot \mathbb{R} 4 \cdot \mathbb{R} 4$$
 の場合 $\left(\frac{2}{6} \cdot \frac{1}{6}\right) \times \left(\frac{4}{5} \cdot \frac{1}{6}\right) \times \left(\frac{3}{4} \cdot \frac{1}{6}\right) \times 6 = \frac{24}{120} \left(\frac{1}{6}\right)^2$

(ii) 黒
$$k$$
・白4・白4の場合 $\left(\frac{4}{6}\cdot\frac{1}{6}\right)\times\left(\frac{2}{5}\cdot\frac{1}{6}\right)\times\left(\frac{1}{4}\cdot\frac{1}{6}\right)\times 6 = \frac{8}{120}\left(\frac{1}{6}\right)^2$

(iii) 黒
$$k$$
・黒 4 ・黒 4 の場合 $\left(\frac{4}{6}\cdot\frac{1}{6}\right)\times\left(\frac{3}{5}\cdot\frac{1}{6}\right)\times\left(\frac{2}{4}\cdot\frac{1}{6}\right)\times 6 = \frac{24}{120}\left(\frac{1}{6}\right)^2$

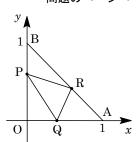
(i)~(iii)より、求める確率は、
$$\frac{24}{120} \left(\frac{1}{6}\right)^2 + \frac{8}{120} \left(\frac{1}{6}\right)^2 + \frac{24}{120} \left(\frac{1}{6}\right)^2 = \frac{56}{120} \left(\frac{1}{6}\right)^2 = \frac{7}{540}$$

[解 説]

丁寧に数えるタイプの確率問題です。(2)では、白球が 2 個より、白 k・白 4・白 4 という場合のないことに要注意です。

問題のページへ

(1) 原点 O, A(1, 0), B(0, 1) に対し、線分 BO, OA, AB の それぞれをt:(1-t)に内分する点を P, Q, R とする。 すると、 \triangle OPQ= \triangle AQR= \triangle BPR= $t(1-t)\triangle$ OAB より、 \triangle PQR= $\{1-3t(1-t)\}\triangle$ OAB= $(1-3t+3t^2)\cdot\frac{1}{2}\cdot1^2$ = $\frac{3}{2}t^2-\frac{3}{2}t+\frac{1}{2}$



- (2) 三平方の定理と余弦定理より、 $PQ^2 = t^2 + (1-t)^2 = 2t^2 2t + 1$ $QR^2 = (1-t)^2 + (\sqrt{2}t)^2 - 2(1-t) \cdot \sqrt{2}t\cos 45^\circ = 5t^2 - 4t + 1$ $PR^2 = t^2 + \{\sqrt{2}(1-t)\}^2 - 2t \cdot \sqrt{2}(1-t)\cos 45^\circ = 5t^2 - 6t + 2$
 - (i) $PQ = QR \text{ Obs} 2t^2 2t + 1 = 5t^2 4t + 1 \text{ if } \theta$, $3t^2 2t = 0$ t(3t 2) = 0 Tos t < 1 is, $t = \frac{2}{3}$
 - (ii) QR = PR のとき $5t^2 4t + 1 = 5t^2 6t + 2$ より, 2t 1 = 0 0 < t < 1 から, $t = \frac{1}{2}$
 - (iii) PR = PQ のとき $5t^2 6t + 2 = 2t^2 2t + 1$ より, $3t^2 4t + 1 = 0$ (3t 1)(t 1) = 0 で 0 < t < 1 から, $t = \frac{1}{3}$
 - (i)~(iii)より、 \triangle PQR が二等辺三角形になるのは、 $t=\frac{2}{3}, \frac{1}{2}, \frac{1}{3}$ のときである。
- (3) $\theta = \angle RPQ$ とすると、余弦定理より、

$$\cos\theta = \frac{\text{PQ}^2 + \text{PR}^2 - \text{QR}^2}{2\text{PQ} \cdot \text{PR}} = \frac{(2t^2 - 2t + 1) + (5t^2 - 6t + 2) - (5t^2 - 4t + 1)}{2\sqrt{2t^2 - 2t + 1}\sqrt{5t^2 - 6t + 2}}$$
$$= \frac{2t^2 - 4t + 2}{2\sqrt{2t^2 - 2t + 1}\sqrt{5t^2 - 6t + 2}} = \frac{(1 - t)^2}{\sqrt{2t^2 - 2t + 1}\sqrt{5t^2 - 6t + 2}}$$

(i)
$$t = \frac{2}{3}$$
 $\emptyset \geq \stackrel{*}{\rightleftharpoons} \cos \theta = \frac{1}{9} \div \left(\sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{9}}\right) = \frac{1}{\sqrt{10}}$

(ii)
$$t = \frac{1}{2} \mathcal{O} \succeq \stackrel{*}{\geq} \cos \theta = \frac{1}{4} \div \left(\sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{4}}\right) = \frac{1}{\sqrt{2}}$$

(iii)
$$t = \frac{1}{3}$$
 \circlearrowleft \succeq $\stackrel{*}{\underset{\circ}{\rightleftharpoons}}$ $\cos \theta = \frac{4}{9} \div \left(\sqrt{\frac{5}{9}} \cdot \sqrt{\frac{5}{9}}\right) = \frac{4}{5}$

[解 説]

三角比の応用問題です。基本的な内容ですが、計算量は多めです。

問題のページへ

(1)
$$y = ax$$
 ……①, $y = x | x - 2 |$ ……②に対し、②から、
$$y = -x(x-2) = -x^2 + 2x = -(x-1)^2 + 1 \quad (x < 2) \dots 3$$
$$y = x(x-2) = x^2 - 2x = (x-1)^2 - 1 \quad (x \ge 2) \dots 4$$

③より、y'=-2x+2 なので、x=0 における微分係数は y'=2、すなわち原点における接線の傾きは 2 となる。

すると、右図から、①と②の共有点の個数は、a < 0のとき 1 個、a = 0のとき 2 個、0 < a < 2のとき 3 個、a = 2のとき 2 個となる。

よって、共有点の個数が最大なのは3個で、このとき、

$$0 < a < 2$$
, $a > 2$

(2) $0 \le a \le 2$ のとき、①と③の $x \ne 0$ の交点は、

$$-x^2 + 2x = ax$$
, $x = 2 - a$

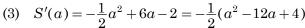
また、①と④の $x \neq 0$ の交点は、

$$x^2 - 2x = ax$$
, $x = 2 + a$

ここで、 $\alpha=2-a$ 、 $\beta=2+a$ とおき、右図の各領域

の面積を S_1 , S_2 , S_3 , S_4 とすると, ①と②で囲まれる図形の面積S(a)は,

$$\begin{split} S(a) &= S_1 + S_3 = S_1 + \left\{ (S_1 + S_2 + S_3 + S_4) - 2S_4 \right\} \\ &= 2S_1 + (S_2 + S_3 + S_4) - 2S_4 \\ &= 2\int_0^\alpha -x(x-\alpha)dx + \int_0^\beta -x(x-\beta)dx - 2\int_0^2 -x(x-2)dx \\ &= 2 \cdot \frac{1}{6}\alpha^3 + \frac{1}{6}\beta^3 - 2 \cdot \frac{1}{6} \cdot 2^3 = \frac{1}{3}(2-\alpha)^3 + \frac{1}{6}(2+\alpha)^3 - \frac{8}{3} \\ &= -\frac{1}{6}\alpha^3 + 3\alpha^2 - 2\alpha + \frac{4}{3} \end{split}$$



すると、S'(a)=0 の解が $a=6\pm 4\sqrt{2}$ より、 $0\leq a\leq 2$ における S(a) の増減は 右表のようになる。

したがって、 $a=6-4\sqrt{2}$ のとき S(a) は最小値をとる。

a	0	•••	$6-4\sqrt{2}$	•••	2
S'(a)		_	0	+	
S(a)		>		7	

「解説]

定積分と面積についての超頻出問題です。(2)の積分は普通に計算してもよいのですが、解答例では公式処理をしました。パズルのようですが。