2026 入試対策 過去問ライブラリー

神戸大学

文系数学 25か年

2001 - 2025

外林 康治 編著

2026 入試対策

神戸大学

文系数学 25 か年

まえがき

本書には、2001 年度以降に出題された神戸大学(前期日程)の文系数学の全問題とその解答例を掲載しています。

過去問から入試傾向をつかみ、そして演習をスムーズに進めるために、現行課程入 試に対応した内容分類を行いました。融合題の配置箇所は鍵となっている分野です。

注 「複素数平面」は出題範囲外ですので除外しました。

電子書籍の概略

- 1 本書のフォーマットは PDF です。閲覧には、「Adobe Acrobat Reader」などの PDF Viewer が必要になります。
- 2 問題と対応する解答例のページの間には、リンクが張られています。リンク元は、問題編の 1, 2,…などの問題番号、解答編の 問題 の文字です。
- 3 2018 年度以降に出題された問題は、その解答例の動画解説を YouTube で配信しています。リンク元は、解答編の解答例+映像解説です。

目 次

分野別問題一覧	3
分野別問題と解答例	
関数	4
微分と積分	4
図形と式	0
図形と計量	9
ベクトル	2
整数と数列	5
確 率	6
論 証	5

分野別問題一覧

関 数/微分と積分/図形と式 図形と計量/ベクトル

整数と数列/確率/論証

- **1** a, b を実数とする。整式 f(x) を $f(x) = x^2 + ax + b$ で定める。以下の問いに答えよ。
- (1) 2 次方程式 f(x) = 0 が異なる 2 つの正の解をもつための a と b がみたすべき必要十分条件を求めよ。
- (2) 2 次方程式 f(x) = 0 が異なる 2 つの実数解をもち、それらがともに-1 より大きく、0 より小さくなるような点(a, b) の存在する範囲を ab 平面上に図示せよ。
- (3) 2次方程式 f(x) = 0 の 2 つの解の実部がともに-1 より大きく, 0 より小さくなるような点(a, b) の存在する範囲を ab 平面上に図示せよ。ただし, 2 次方程式の重解は 2 つと数える。 [2023]
- **2** 次の2つの条件を満たすxの2次式f(x)を考える。
 - (i) y = f(x)のグラフは点(1, 4)を通る
 - (ii) $\int_{-1}^{2} f(x) dx = 15$

以下の問いに答えよ。

- (1) f(x)の1次の項の係数を求めよ。
- (2) 2 次方程式 f(x) = 0 の 2 つの解を α , β とするとき, α と β の満たす関係式を求めよ。
- (3) (2)における α , β がともに正の整数となるようなf(x)をすべて求めよ。 [2017]
- **3** a を正の定数とし、 $f(x) = |x^2 + 2ax + a|$ とおく。以下の問いに答えよ。
- (1) y = f(x) のグラフの概形をかけ。
- (2) y = f(x) のグラフが点(-1, 2) を通るときの a の値を求めよ。また、そのときの y = f(x) のグラフと x 軸で囲まれる図形の面積を求めよ。
- (3) a=2とする。すべての実数 x に対して $f(x) \ge 2x + b$ が成り立つような実数 b の とり得る値の範囲を求めよ。 [2016]
- **4** 実数 a, b に対して, $f(x) = a(x-b)^2$ とおく。ただし, a は正とする。放物線 y = f(x) が直線 y = -4x + 4 に接している。このとき、以下の問いに答えよ。
- (1) $b \in a$ を用いて表せ。
- (2) $0 \le x \le 2$ において、f(x) の最大値 M(a) と、最小値 m(a) を求めよ。
- (3) a が正の実数を動くとき、M(a)の最小値を求めよ。 [2010]

- **5** a を正の実数とし、 $f(x) = -a^2x^2 + 4ax$ とする。このとき、以下の問いに答えよ。
- (1) $0 \le x \le 3$ における f(x) の最大値を求めよ。
- (2) 2 点 A(2, 3), B(3, 3) を端点とする線分を l とする。曲線 y = f(x) と線分 l (端点を含む)が共有点をもつような a の値の範囲を求め、数直線上に図示せよ。

[2009]

- **6** x の 2 次関数 $f(x) = ax^2 + bx + c$ とその導関数 f'(x) について、次の問いに答えよ。ただし、a、b、c は定数で $a \neq 0$ とする。
- (1) 実数 α , β について, $f(\alpha) = f(\beta)$ ならば $|f'(\alpha)| = |f'(\beta)|$ であることを示せ。
- (2) 実数 α , β について, $|f'(\alpha)| = |f'(\beta)|$ ならば $f(\alpha) = f(\beta)$ であることを示せ。

[2008]

- $\alpha = \frac{3+\sqrt{7}i}{2}$ とする。ただし、i は虚数単位である。次の問いに答えよ。
- (1) α を解にもつような 2 次方程式 $x^2 + px + q = 0$ (p, q は実数) を求めよ。
- (2) 整数 a, b, c を係数とする 3 次方程式 $x^3 + ax^2 + bx + c = 0$ について、解の 1 つは α であり、また $0 \le x \le 1$ の範囲に実数解を 1 つもつとする。このような整数の組 (a, b, c)をすべて求めよ。 [2006]
- **8** a を正の実数とする。関数 $f(x) = ax^2 + (1-2a)x$ が次の 2 つの条件
 - (i) $-3 \le x < 0$ のとき, $f(x) \ge -1$
 - (ii) $x \ge 0$ \emptyset ξ ξ , $f(x) \ge 0$

をともに満たすような *a* の値の範囲を求めよ。

[2005]

- **1** a を実数とする。 $f(x) = 2x^3 + ax^2 1$ とおくとき,以下の問いに答えよ。
- (1) 方程式 f(x) = 0 は x = -1 を解にもつとする。このとき、a の値を求め、方程式 f(x) = 0 の解をすべて求めよ。
- (2) a の値を(1)で求めたものとする。関数 f(x) の極値を求めよ。
- (3) 方程式 f(x) = 0 が異なる 3 つの実数解をもつような a の値の範囲を求めよ。

[2025]

- **2** a を正の実数とする。 $x \ge 0$ のとき $f(x) = x^2$, x < 0 のとき $f(x) = -x^2$ とし、 曲線 y = f(x) を C, 直線 y = 2ax - 1 を l とする。以下の問いに答えよ。
- (1) $C \ge l$ の共有点の個数を求めよ。
- (2) $C \ge l$ がちょうど 2 個の共有点をもつとする。 $C \ge l$ で囲まれた図形の面積を求めよ。 [2022]
- **3** a, b, c, p は実数とし、 $f(x) = x^3 + ax^2 + bx + c$ は $(x-p)^2$ で割り切れるとする。 以下の問いに答えよ。
- (1) b, c を a, p を用いて表せ。
- (2) f(x)の導関数 f'(x) は、 $f'(p+\frac{4}{3})=0$ をみたすとする。a を p を用いて表せ。
- (3) (2)の条件のもとでp=0とする。曲線y=f(x)とy=f'(x)の交点をx 座標が小さい方から順に A, B, C とし、線分 AB と曲線y=f'(x)で囲まれた部分の面積を S_1 、線分 BC と曲線y=f'(x)で囲まれた部分の面積を S_2 とする。このとき、 S_1+S_2 の値を求めよ。 [2020]
- **4** a, b, c を実数とし, $a \neq 0$ とする。 2 次関数 f(x) を $f(x) = ax^2 + bx + c$ で定める。 曲線 y = f(x) は点 $\left(2, 2 \frac{c}{2}\right)$ を通り, $\int_0^3 f(x) dx = \frac{9}{2}$ を満たすとする。以下の問いに答えよ。
- (1) 関数 f(x) を a を用いて表せ。
- (2) 点(1, f(1))における曲線y = f(x)の接線をlとする。直線lの方程式をaを用いて表せ。
- (3) $0 < a < \frac{1}{2}$ とする。(2)で求めた直線 l の $y \ge 0$ の部分と曲線 y = f(x) の $x \ge 0$ の 部分および x 軸で囲まれた図形の面積 S の最大値と,そのときの a の値を求めよ。 [2019]
- **5** t を正の実数とする。 $f(x) = x^3 + 3x^2 3(t^2 1)x + 2t^3 3t^2 + 1$ とおく。以下の問いに答えよ。
- (1) $2t^3 3t^2 + 1$ を因数分解せよ。
- (2) f(x)が極小値 0 をもつことを示せ。
- (3) $-1 \le x \le 2$ における f(x) の最小値 m と最大値 M を t の式で表せ。 [2017]

- **6** a を正の実数とする。2 つの放物線 $y=\frac{1}{2}x^2-3a$, $y=-\frac{1}{2}x^2+2ax-a^3-a^2$ が異なる 2 点で交わるとし,2 つの放物線によって囲まれる部分の面積をS(a) とする。以下の問いに答えよ。
- (1) a の値の範囲を求めよ。
- (2) S(a) を a を用いて表せ。
- (3) S(a) の最大値とそのときのa の値を求めよ。 [2012]
- **7** 実数 x, y に対して,等式 $x^2 + y^2 = x + y$ ……①を考える。 t = x + y とおく。以下の問いに答えよ。
- (1) ①の等式が表す xy 平面上の図形を図示せよ。
- (2) $x \ge y$ が①の等式を満たすとき, t のとりうる値の範囲を求めよ。
- (3) x と y が①の等式を満たすとする。 $F = x^3 + y^3 x^2y xy^2$ を t を用いた式で表せ。また、F のとりうる値の最大値と最小値を求めよ。 [2011]
- **8** xy 平面における曲線 $C: y = x^2$ と直線l: y = ax (a は正の定数) について、次の問いに答えよ。
- (1) lと平行な、Cの接線 mの方程式を a を用いて表せ。
- (2) 原点 O と m の距離を a を用いて表せ。
- (3) $l \in C$ の交点のうち O 以外のものを P とする。線分 OP を 1 辺とする四角形 OPQR が長方形となるように、m 上に 2 点 Q, R をとる。この長方形の面積が 2 となるときの a の値を求めよ。 [2007]
- **9** *a* を正の実数とする。次の問いに答えよ。
- (2) $F(a) = \int_{-1}^{1} |x^2 a| x | |dx を求めよ。$
- (3) F(a) の最小値を求めよ。 [2005]

- **10** a を正の実数とする。関数 $f(x) = -x^2 + ax$ について次の問いに答えよ。
- (1) 曲線 y = f(x) 上の点 P(t, f(t)) を通る接線の方程式を a, t を用いて表せ。
- (2) 点A $(-a, 4a^2-5a+2)$ から曲線y=f(x)へ接線が2本引けることを示せ。
- (3) その 2 本の接線のうち接点の x 座標が大きい方の接線を l, 接点を P(t, f(t)) と する。このとき、0 < t < a を満たすための a の範囲を求めよ。
- (4) a=1のとき、直線x=-1、接線 l と曲線y=f(x)で囲まれた図形の面積を求めよ。 [2004]
- **11** a は 1 より大きい定数とする。関数 f(x) = (x+a)(x+1)(x-a) について、次の問いに答えよ。
- (1) f(x) は $x = \alpha$ と $x = \beta$ ($\alpha < \beta$) で極値をとるとする。 2 点 (α , $f(\alpha$)) と (β , $f(\beta)$) を結ぶ直線の傾きが、点(-1, 0) における曲線 y = f(x) の接線の傾き と等しいとき, α の値を求めよ。
- (2) f(x)の導関数を f'(x) とする。a が(1)で求めた値をとるとき,曲線 y = f'(x) と x 軸で囲まれた部分の面積 S を求めよ。 [2003]
- **12** a を正の定数として、関数 $f(x) = (x-1)\{4x^2 (6a-4)x + 12a-11\}$ を考える。 次の問いに答えよ。
- (1) 導関数 f'(x) を求めよ。
- (2) $f'(x) \ge 0$ が区間 $0 \le x \le 2$ で成り立つとき, α のとりうる値の範囲を求めよ。
- (3) (2)のとき、区間 $0 \le x \le 2$ における|f(x)|の最大値を求めよ。 [2001]

1 a, b, c は実数で、 $a \neq 0$ とする。放物線 C と直線 l_1 、 l_2 をそれぞれ $C: y = ax^2 + bx + c$ 、 $l_1: y = -3x + 3$ 、 $l_2: y = x + 3$

- (1) b を求めよ。また c を a を用いて表せ。
- (2) C が x 軸と異なる 2 点で交わるとき、 $\frac{1}{a}$ のとりうる値の範囲を求めよ。
- (3) C とL の接点を P, C とL の接点を Q, 放物線 C の頂点を R とする。a が(2)の条件を満たしながら動くとき、 $\triangle PQR$ の重心 G の軌跡を求めよ。 [2024]

2 *a* を正の実数とする。2 つの円

$$C_1: x^2 + y^2 = a$$
, $C_2: x^2 + y^2 - 6x - 4y + 3 = 0$

が異なる 2 点 A, B で交わっているとする。直線 AB が x 軸および y 軸と交わる点を それぞれ (p, 0), (0, q) とするとき,以下の問いに答えよ。

- (1) a のとりうる値の範囲を求めよ。
- (2) p, qの値をaを用いて表せ。
- (3) p,q の値がともに整数となるような a の値をすべて求めよ。 [2023]
- **3** a を正の実数とし、円 $x^2 + y^2 = 1$ と直線 $y = \sqrt{ax} 2\sqrt{a}$ が異なる 2 点 P, Q で交わっているとする。線分 PQ の中点を R(s, t) とする。以下の問いに答えよ。
- (1) a のとりうる値の範囲を求めよ。
- (2) s, t の値を a を用いて表せ。
- (3) a が(1)で求めた範囲を動くときにs のとりうる値の範囲を求めよ。
- (4) tの値をsを用いて表せ。

[2022]

- $oxed{4}$ $s,\ t$ を s < t を満たす実数とする。座標平面上の 3 点 $A(1,\ 2)$, $B(s,\ s^2)$, $C(t,\ t^2)$ が一直線上にあるとする。以下の問いに答えよ。
- (1) $s \ge t$ の間の関係式を求めよ。
- (2) 線分 BC の中点をM(u, v)とする。 $u \ge v$ の間の関係式を求めよ。
- (3) s, t が変化するとき, v の最小値と, そのときの u, s, t の値を求めよ。 [2015]
- **5** a, b, c は実数とし、a < b とする。平面上の相異なる 3 点 $A(a, a^2)$, $B(b, b^2)$, $C(c, c^2)$ が、辺 AB を斜辺とする直角三角形を作っているとする。次の問いに答えよ。
- (1) $a \in b$. $c \in B$ に表せ。
- (2) $b-a \ge 2$ が成り立つことを示せ。
- (3) 斜辺 AB の長さの最小値と、そのときの A, B, C の座標をそれぞれ求めよ。

[2013]

- **6** 座標平面上に 2 点 A(1, 0), B(-1, 0) と直線 l があり, A と l の距離と B と l の距離の和が 1 であるという。以下の問いに答えよ。
- (1) lはy軸と平行でないことを示せ。
- (2) l は線分 AB と交わるとき, l の傾きを求めよ。
- (3) lが線分ABと交わらないとき, lと原点との距離を求めよ。 [2012]

- **| 7** 実数 t に対して, xy 平面上の直線 $l_t: y = 2tx t^2$ を考える。次の問いに答えよ。
- (1) 点 P を通る直線 L はただ 1 つであるとする。このような点 P の軌跡の方程式を求めよ。
- (2) t が $|t| \ge 1$ の範囲を動くとき、直線 t が通る点(x, y) の全体を図示せよ。[2006]
- **8** 実数 t に対して, xy 平面上の直線 $(1-t^2)x-2ty=1+t^2$ は, t の値によらずある円 C に接しているものとする。次の問いに答えよ。
- (1) 円Cの方程式を求めよ。また、接点の座標を求めよ。
- (2) t が $t \ge 1$ の範囲を動くとき、直線の通過する範囲を図示せよ。 [2002]

- **1** 水平な地面に 1 本の塔が垂直に建っている(太さは無視する)。塔の先端を P と し,足元の地点を H とする。また,H を通らない 1 本の道が一直線に延びている(幅は 無視する)。道の途中に 3 地点 A,B,C がこの順にあり,BC = 2AB をみたしている。 以下の問いに答えよ。
- (1) $2AH^2 3BH^2 + CH^2 = 6AB^2$ が成り立つことを示せ。
- (2) A, B, C から P を見上げた角度 ∠PAH, ∠PBH, ∠PCH はそれぞれ 45°, 60°, 30°であった。AB=100 m のとき、塔の高さ PH (m) の整数部分を求めよ。
- (3) (2)において、H と道との距離(m)の整数部分を求めよ。 [2021]
- **2** xy 平面上に相異なる 4 点 A, B, C, D があり、線分 AC と BD は原点 O で交わっている。点 A の座標は(1, 2) で、線分 OA と OD の長さは等しく、四角形 ABCD は円に内接している。 $\angle AOD = \theta$ とおき、点 C の x 座標を a、四角形 ABCD の面積を S とする。以下の問いに答えよ。
- (1) 線分 OC の長さを a を用いた式で表せ。また、線分 OB と OC の長さは等しいことを示せ。
- (2) $S \otimes a \otimes \theta \otimes \theta$ を用いた式で表せ。
- (3) $\theta = \frac{\pi}{6}$ とし、 $20 \le S \le 40$ とするとき、a のとりうる値の最大値を求めよ。 [2011]

- $|\overrightarrow{AB}| = 2$ を満たす \triangle PAB を考え、辺 AB の中点を M、 \triangle PAB の重心を G とする。以下の問いに答えよ。
- (1) $|\overrightarrow{PM}|^2$ を内積 $\overrightarrow{PA} \cdot \overrightarrow{PB}$ を用いて表せ。
- (2) $\angle AGB = \frac{\pi}{2}$ のとき、 $\overrightarrow{PA} \cdot \overrightarrow{PB}$ の値を求めよ。
- (3) 点 A と点 B を固定し、 $\overrightarrow{PA} \cdot \overrightarrow{PB} = \frac{5}{4}$ を満たすように点 P を動かすとき、 $\angle ABG$ の最大値を求めよ。ただし、 $0 < \angle ABG < \pi$ とする。 [2019]
- (1) $\overrightarrow{QP} \geq \overrightarrow{QR} \geq t$, \overrightarrow{a} , \overrightarrow{b} , $\overrightarrow{c} \geq \overline{c}$ を用いて表せ。
- (2) $\angle PQR = \frac{\pi}{2}$ のとき、t の値を求めよ。
- (3) t が(2)で求めた値をとるとき、 $\triangle PQR$ の面積を求めよ。 [2018]
- 図 四面体 OABC において、P を辺 OA の中点、Q を辺 OB を 2:1 に内分する点、R を辺 BC の中点とする。P, Q, R を通る平面と辺 AC の交点を S とする。 $\overrightarrow{OA} = \overrightarrow{a}$ $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とおく。以下の問いに答えよ。
- (1) \overrightarrow{PQ} , \overrightarrow{PR} をそれぞれ \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。
- (2) 比 $|\overrightarrow{AS}|$: $|\overrightarrow{SC}|$ を求めよ。
- (3) 四面体 OABC を 1 辺の長さが 1 の正四面体とするとき、 $|\overrightarrow{\mathrm{QS}}|$ を求めよ。[2016]
- **4** 空間において、原点 O を通らない平面 α 上に 1 辺の長さ 1 の正方形があり、その頂点を順に A, B, C, D とする。このとき、以下の問いに答えよ。
- (1) ベクトル \overrightarrow{OD} を, \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} を用いて表せ。
- (2) OA = OB = OC のとき、ベクトル $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ が、平面 α と垂直である ことを示せ。 [2014]

- **5** 空間において、2点A(0, 1, 0),B(-1, 0, 0) を通る直線を l とする。次の問いに答えよ。
- (1) 点 \mathbf{P} を l 上に,点 \mathbf{Q} を z 軸上にとる。 \overrightarrow{PQ} がベクトル(3, 1, -1) と平行になるときの \mathbf{P} と \mathbf{Q} の座標をそれぞれ求めよ。
- (2) 点 R を l 上に,点 S を z 軸上にとる。 \overrightarrow{RS} が \overrightarrow{AB} およびベクトル(0,0,1)の両方に垂直になるときの R と S の座標をそれぞれ求めよ。
- (3) R, S を(2)で求めた点とする。点 T を l 上に、点 U を z 軸上にとる。また、 $\vec{v}=(a,\ b,\ c)$ は零ベクトルではなく、 \overrightarrow{RS} に垂直ではないとする。 \overrightarrow{TU} が \vec{v} と平行になるときの T と U の座標をそれぞれ求めよ。 [2013]
- **6** 空間内に 4 点 O, A, B, C があり,

$$OA = 3$$
, $OB = OC = 4$, $\angle BOC = \angle COA = \angle AOB = \frac{\pi}{3}$

であるとする。3 点 A, B, C を通る平面に垂線 OH を下ろす。このとき、以下の問いに答えよ。

- (1) $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, $\vec{c} = \overrightarrow{OC}$ とし, $\overrightarrow{OH} = r\vec{a} + s\vec{b} + t\vec{c}$ と表すとき, r, s, t を求めよ。
- (2) 直線 CH と直線 AB の交点を D とするとき, 長さの比 CH: HD, AD: DB をそれぞれ求めよ。 [2010]
- 7 以下の問いに答えよ。
- (1) xy 平面において、O(0, 0)、 $A\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ とする。このとき、 $(\overrightarrow{OP} \cdot \overrightarrow{OA})^2 + |\overrightarrow{OP} (\overrightarrow{OP} \cdot \overrightarrow{OA})\overrightarrow{OA}|^2 \le 1$

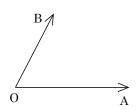
を満たす点P全体のなす図形の面積を求めよ。

(2) xyz 空間において、O(0, 0, 0)、 $A\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ とする。このとき、 $(\overrightarrow{OP} \cdot \overrightarrow{OA})^2 + |\overrightarrow{OP} - (\overrightarrow{OP} \cdot \overrightarrow{OA})\overrightarrow{OA}|^2 \leq 1$

を満たす点 P 全体のなす図形の体積を求めよ。

[2009]

- 图 平面上に原点 O から出る、相異なる 2 本の半直線 OX, OY をとり、 \angle XOY < 180° とする。半直線 OX 上に O と異なる点 A を、半直線 OY 上に O と異なる点 B とり、 $\vec{a} = \overrightarrow{OA}$ 、 $\vec{b} = \overrightarrow{OB}$ とおく。次の問いに答えよ。
- (1) 点 C が $\angle XOY$ の二等分線上にあるとき、ベクトル $\vec{c} = \overrightarrow{OC}$ はある実数 t を用いて $\vec{c} = t \left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} \right)$ と表されることを示せ。
- (2) \angle XOY の二等分線と \angle XAB の二等分線の交点を P とおく。 OA = 2 , OB = 3 , AB = 4 のとき, $\vec{p} = \overrightarrow{OP}$ を \vec{a} , \vec{b} を用いて表せ。 [2006]
- **9** 三角形 OAB において、辺 OA、辺 OB の長さをそれぞれ a、b とする。また、角 AOB は直角でないとする。2 つのベクトル \overrightarrow{OA} と \overrightarrow{OB} の内積 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ を k とおく。次 の問いに答えよ。
- (1) 直線 OA 上に点 C を、 \overrightarrow{BC} が \overrightarrow{OA} と垂直になるようにとる。 \overrightarrow{OC} を a, k, \overrightarrow{OA} を用いて表せ。
- (2) $a = \sqrt{2}$, b = 1 とする。直線 BC 上に点 H を, \overrightarrow{AH} が \overrightarrow{OB} と垂直になるようにとる。 $\overrightarrow{OH} = u\overrightarrow{OA} + v\overrightarrow{OB}$ とおくとき, u と v をそれぞれ k で表せ。 [2005]
- **10** 平行四辺形 ABCD において、対角線 AC を2:3に内分する点を M, 辺 AB を2:3に内分する点を N, 辺 BC をt:1-tに内分する点を L とし、AL と CN の交点を P とする。次の問いに答えよ。
- (1) $\overrightarrow{BA} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{c}$ とするとき, \overrightarrow{BP} を \overrightarrow{a} , \overrightarrow{c} , t を用いて表せ。
- (2) 3 点 P, M, D が一直線上にあるとき, t の値を求めよ。 [2004]
- 11 3 点 O, A, B は, 一直線上にない点とし, $\overrightarrow{OC} = 2\overrightarrow{OA} + 3\overrightarrow{OB}$ とする。また, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とおく。このとき次の問いに答えよ。
- (1) 点 $P \circ \overrightarrow{BP} = t\overrightarrow{BC}$ (t は実数) を満たす点とする。このとき, $\overrightarrow{OP} \circ \overrightarrow{a}$, \overrightarrow{b} ,t で表せ。
- (2) 点 Q を OQ = 2sOA(s は実数)を満たす点とする。P と Q の中点を M とする。t, s が $0 \le t \le 1$, $0 \le s \le 1$ を満たしながら変化するとき,点 M の存在する範囲を図示せよ。



[2001]

- **1** 実数 a に対して、a を超えない最大の整数を k とするとき、a-k を a の小数部分という。n を自然数とし、 $a_n = \sqrt{n^2 + 1}$ とおく。以下の問いに答えよ。
- (1) $a_n < n+1$ が成り立つことを示せ。
- (2) $b_n \in a_n$ の小数部分とする。 $b_n \in n$ を用いて表せ。
- (3) b_n を(2)で定めたものとする。m, n を異なる 2 つの自然数とするとき, $b_m \neq b_n$ であることを示せ。 [2025]
- **2** 各項が正である数列 $\{a_n\}$ を次のように定める。 a_1 は関数 $y = \frac{1}{3}x^3 10x$ $(x \ge 0)$ が最小値をとるときのxの値とする。 a_{n+1} は関数 $y = \frac{1}{3}x^3 10a_nx$ $(x \ge 0)$ が最小値をとるときのxの値とする。数列 $\{b_n\}$ を $b_n = \log_{10} a_n$ で定める。以下の問いに答えよ。
- (1) a₁とb₁を求めよ。
- (2) a_{n+1} を a_n を用いて表せ。
- (3) $b_{n+1} \in b_n$ を用いて表せ。
- (4) 数列 $\{b_n\}$ の一般項を求めよ。
- (5) $\frac{a_1a_2a_3}{100}$ の値を求めよ。 [2024]
- **3** a, b を実数とし、1 < a < b とする。以下の問いに答えよ。
- (1) x, y, z を 0 でない実数とする。 $a^x = b^y = (ab)^z$ ならば $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ であることを示せ。
- (2) m, n をm > n をみたす自然数とし、 $\frac{1}{m} + \frac{1}{n} = \frac{1}{5}$ とする。m, n の値を求めよ。
- (3) m, n を自然数とし、 $a^m = b^n = (ab)^5$ とする。b の値をa を用いて表せ。 [2022]
- **4** *i*を虚数単位とする。以下の問いに答えよ。
- (1) n=2, 3, 4, 5のとき $(3+i)^n$ を求めよ。またそれらの虚部の整数を 10 で割った 余りを求めよ。
- (2) n を正の整数とするとき $(3+i)^n$ は虚数であることを示せ。 [2021]

- **5** n を自然数とし、数列 $\{a_n\}$ 、 $\{b_n\}$ を次の(i)、(ii)で定める。

 - (ii) $f_n(x) = a_n(x+1)^2 + 2b_n$ とし、 $-2 \le x \le 1$ における $f_n(x)$ の最大値を a_{n+1} 、最小値を b_{n+1} とする。

以下の問いに答えよ。

- (1) すべての自然数 n について $a_n > 0$ かつ $b_n > 0$ であることを示せ。
- (2) 数列 $\{b_n\}$ の一般項を求めよ。

(3)
$$c_n = \frac{a_n}{2^n}$$
 とおく。数列 $\{c_n\}$ の一般項を求めよ。 [2020]

6 次のように 1, 3, 4 を繰り返し並べて得られる数列を $\{a_n\}$ とする。

1, 3, 4, 1, 3, 4, 1, 3, 4, ...

すなわち、 $a_1=1$ 、 $a_2=3$ 、 $a_3=4$ で、4以上の自然数nに対し、 $a_n=a_{n-3}$ とする。この数列の初項から第n項までの和を S_n とする。以下の問いに答えよ。

- (1) S_n を求めよ。
- (2) $S_n = 2019$ となる自然数 n は存在しないことを示せ。
- (3) どのような自然数 k に対しても、 $S_n = k^2$ となる自然数 n が存在することを示せ。

[2019]

 $f(x) = (2x-1)^3$ とする。数列 $\{x_n\}$ を次のように定める。 $x_1 = 2$ であり, x_{n+1} $(n \ge 1)$ は点 $(x_n, f(x_n))$ における曲線 y = f(x) の接線と x 軸の交点の x 座標とする。

以下の問いに答えよ。

- (1) 点(t, f(t)) における曲線 y = f(x) の接線の方程式を求めよ。また $t \neq \frac{1}{2}$ のときに、その接線と x 軸の交点の x 座標を求めよ。
- (2) $x_n > \frac{1}{2}$ を示せ。また x_n をnの式で表せ。
- (3) $|x_{n+1}-x_n| < \frac{3}{4} \times 10^{-5}$ を満たす最小の n を求めよ。ただし $0.301 < \log_{10} 2 < 0.302$, $0.477 < \log_{10} 3 < 0.478$ は用いてよい。 [2018]

8 数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ が $a_1=5$, $b_1=7$ を満たし, さらにすべての実数 x とすべての自然数 n に対して

$$x(a_{n+1}x+b_{n+1}) = \int_{c_n}^{x+c_n} (a_nt+b_n)dt$$

を満たすとする。以下の問いに答えよ。

- (1) 数列 $\{a_n\}$ の一般項を求めよ。
- (2) $c_n = 3^{n-1}$ のとき, 数列 $\{b_n\}$ の一般項を求めよ。
- (3) $c_n = n$ のとき、数列 $\{b_n\}$ の一般項を求めよ。 [2015]
- oxedge 9 a,b,cを1以上7以下の自然数とする。次の条件(*)を考える。
 - (*) 3辺の長さがa, b, c である三角形と、3辺の長さが $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ である三角形が両方とも存在する。

以下の問いに答えよ。

- (1) a = b > c であり、かつ条件(*)を満たす a, b, c の組の個数を求めよ。
- (2) a > b > c であり、かつ条件(*)を満たすa, b, c の組の個数を求めよ。
- (3) 条件(*)を満たす a, b, c の組の個数を求めよ。 [2015]
- **10** 2 次方程式 $x^2 x 1 = 0$ の 2 つの解を α , β とし, $c_n = \alpha^n + \beta^n$, $n = 1, 2, 3, \cdots$

とおく。以下の問いに答えよ。

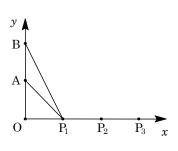
- (1) n を 2 以上の自然数とするとき、 $c_{n+1} = c_n + c_{n-1}$ となることを示せ。
- (2) 曲線 $y = c_1 x^3 c_3 x^2 c_2 x + c_4$ の極値を求めよ。
- (3) 曲線 $y = c_1 x^2 c_3 x + c_2$ と, x 軸で囲まれた図形の面積を求めよ。 [2014]
- **11** m, n(m < n) を自然数とし, $a = n^2 m^2$,b = 2mn, $c = n^2 + m^2$ とおく。 3 辺 の長さが a, b, c である三角形の内接円の半径を r とし,その三角形の面積を S とする。このとき,以下の問いに答えよ。
- (1) $a^2 + b^2 = c^2$ を示せ。
- (2) $r \in m, n \in \mathbb{R}$ を用いて表せ。
- (3) r が素数のときに、S を r を用いて表せ。
- (4) r が素数のときに、S が 6 で割り切れることを示せ。 [2014]

- **12** a, b を自然数とする。以下の問いに答えよ。
- (1) ab が 3 の倍数であるとき, a または b は 3 の倍数であることを示せ。
- (2) a+b と ab がともに 3 の倍数であるとき, a と b はともに 3 の倍数であることを示せ。
- (3) a+bと a^2+b^2 がともに 3 の倍数であるとき, aと b はともに 3 の倍数であることを示せ。 [2010]
- **13** 1からnまでの自然数 $1, 2, 3, \cdots, n$ の和をSとするとき、次の問いに答えよ。
- (1) n を 4 で割った余りが 0 または 3 ならば, S が偶数であることを示せ。
- (2) S が偶数ならば, n を 4 で割った余りが 0 または 3 であることを示せ。
- (3) n を 8 で割った余りが 3 または 4 ならば, S が 4 の倍数でないことを示せ。

[2008]

- **14** 次の問いに答えよ。
- (1) 漸化式 $x_{n+1} a = -2x_n + 2a$ (a は定数) で定まる数列 x_1 , x_2 , x_3 , …の一般項 x_n を x_1 , a を 用いて表せ。
- (2) xy 平面において曲線 $C: y = f(x) = x^3 3ax^2$ (a は定数)を考える。C 上に点 $P_1(t_1, f(t_1))$ をとる。ただし、 $t_1 \neq a$ とする。 P_1 における C の接線と C の交点のうち、 P_1 と異なるものを $P_2(t_2, f(t_2))$ とする。 t_2 を t_1 、 t_2 を用いて表せ。
- (3) さらに、 P_2 における C の接線と C の交点のうち、 P_2 と異なるものを P_3 とする。以下、同様に P_4 、 P_5 、 P_6 、…を定める。 P_1 、 P_2 、 P_3 ,…はすべて相異なることを示せ。
- **15** 初項が 1 で公差が自然数 d である等差数列の初項から第 n 項までの和を S_n とする。 $n \ge 3$ のとき、次の問いに答えよ。
- (1) $S_n = 94$ となる n と d がちょうど 1 組ある。その n と d を求めよ。
- (2) $S_n = 98$ となる n と d の組はない。その理由を述べよ。 [2004]

16 座標平面上に 3 点O(0, 0), A(0, 1), B(0, 2) を y とる。自然数 k に対し点 P_k の座標を(k, 0) とする。自然 B 数 n に対し、2n 本の線分 AP_1 , AP_2 , …, AP_n , BP_1 , A BP_2 , …, BP_n により分けられる第 1 象限の部分の個数を a_n とする。たとえばn=1のとき,図のように第 1 象限が 3 つの部分に分けられるので $a_1=3$ である。次の問いに答えよ。



- (1) a_2 , a_3 の値を求めよ。
- (2) a_{n+1} を a_n と n を用いて表し、その理由を述べよ。
- (3) $a_n \in n$ を用いて表せ。

[2003]

17 数列 $\{a_n\}$ は、初項 a および公差 d が整数であるような等差数列であり、 $8 \le a_2 \le 10$ 、 $14 \le a_4 \le 16$ 、 $19 \le a_5 \le 21$ を満たしている。このような数列 $\{a_n\}$ をすべて求めよ。

- **1** 1 個のさいころを 2 回続けて投げるとき、出た目の数を順に a、b とおく。座標平面上の 2 点 A、B を、A $\left(\cos\frac{a}{6}\pi, \sin\frac{a}{6}\pi\right)$ 、B $\left(\cos\frac{b+6}{6}\pi, \sin\frac{b+6}{6}\pi\right)$ とし、原点を 0 とする。以下の問いに答えよ。
- (1) 3点 O, A, B が一直線上にある確率を求めよ。
- (2) 3点 O, A, B が一直線上になく、かつ三角形 OAB の面積が $\frac{1}{4}$ 以下である確率を求めよ。
- (3) 2 点 A, B 間の距離が 1 より大きい確率を求めよ。 [2025]

- **2** n を自然数とする。以下の問いに答えよ。
- (1) 1 個のサイコロを投げて出た目が必ず n の約数となるような n で最小のものを求めよ。
- (2) 1 個のサイコロを投げて出た目が n の約数となる確率が $\frac{5}{6}$ であるような n で最小のものを求めよ。
- (3) 1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。

[2024]

- **3** A, B 0 2 人が, はじめに, A は 2 枚の硬貨を, B は 1 枚の硬貨を持っている。2 人は次の操作(P)を繰り返すゲームを行う。
 - (P) 2 人は持っている硬貨すべてを同時に投げる。それぞれが投げた硬貨のうち 表が出た硬貨の枚数を数え、その枚数の少ない方が相手に 1 枚の硬貨を渡す。表 が出た硬貨の枚数が同じときは硬貨のやりとりは行わない。

操作(P)を繰り返し、2 人のどちらかが持っている硬貨の枚数が 3 枚となった時点でこのゲームは終了する。操作(P)を n 回繰り返し行ったとき、A が持っている硬貨の枚数が 3 枚となってゲームが終了する確率を p_n とする。ただし、どの硬貨も 1 回投げたとき、表の出る確率は $\frac{1}{2}$ とする。以下の問いに答えよ。

- (1) p₁の値を求めよ。
- (2) p₂の値を求めよ。
- (3) p_3 の値を求めよ。

[2023]

- 4 以下の問いに答えよ。
- (1) 和が 30 になる 2 つの自然数からなる順列の総数を求めよ。
- (2) 和が30になる3つの自然数からなる順列の総数を求めよ。
- (3) 和が 30 になる 3 つの自然数からなる組合せの総数を求めよ。 [2020]
- (1) (*)がx=1を解にもつ確率を求めよ。
- (2) (*)が整数を解にもつとする。このとき(*)の解はともに正の整数であり、また少なくとも1つの解は3以下であることを示せ。
- (3) (*)が整数を解にもつ確率を求めよ。

[2018]

- **6** $\overrightarrow{v_1} = (1, 1, 1)$, $\overrightarrow{v_2} = (1, -1, -1)$, $\overrightarrow{v_3} = (-1, 1, -1)$, $\overrightarrow{v_4} = (-1, -1, 1)$ とする。座標空間内の動点 P が原点 O から出発し,正四面体のサイコロ(1, 2, 3, 4 の目がそれぞれ確率 $\frac{1}{4}$ で出る)をふるごとに,出た目が k(k=1, 2, 3, 4) のときは $\overrightarrow{v_k}$ だけ移動する。すなわち,サイコロを n 回ふった後の動点 P の位置を P_n として,サイコロを (n+1) 回目にふって出た目が k ならば, $\overline{P_nP_{n+1}} = \overrightarrow{v_k}$ である。ただし, $P_0 = O$ である。以下の問いに答えよ。
- (1) 点 P_2 がx軸上にある確率を求めよ。
- (2) $\overrightarrow{P_0P_2} \perp \overrightarrow{P_2P_4}$ となる確率を求めよ。
- (3) $4 点 P_0$, P_1 , P_2 , P_3 が同一平面上にある確率を求めよ。 [2017]
- **7** さいころを 4 回振って出た目を順に a, b, c, d とする。以下の問いに答えよ。
- (1) $ab \ge cd + 25$ となる確率を求めよ。
- (2) ab=cd となる確率を求めよ。
- **8** 赤色, 緑色, 青色のさいころが各 2 個ずつ, 計 6 個ある。これらを同時にふると き,

[2016]

赤色 2 個のさいころの出た目の数 n, n2 に対し $R=|n-n_2|$ 緑色 2 個のさいころの出た目の数 g_1 , g_2 に対し $G=|g_1-g_2|$ 青色 2 個のさいころの出た目の数 g_1 , g_2 に対し g_1 0 に対し g_2 1 に対し g_2 2 に対し g_3 3 に対し g_4 3 に対し g_4 4 に対し g_5 4 に対し g_5 5 に対し g_6 5 に対し g_7 6 に対し g_7 7 に対し g_8 7 に対し g_8 8 に対し g_8 9 に g_8 9 に対し g_8 9 に g_8 9 に

とする。次の問いに答えよ。

- (1) R がとりうる値と、R がそれらの各値をとる確率をそれぞれ求めよ。
- (2) $R \ge 4$, $G \ge 4$, $B \ge 4$ が同時に成り立つ確率を求めよ。
- (3) *RGB*≧80となる確率を求めよ。 [2013]

- **9** 袋の中に 0 から 4 までの数字のうち 1 つが書かれたカードが 1 枚ずつ合計 5 枚入っている。 4 つの数 0, 3, 6, 9 をマジックナンバーと呼ぶことにする。次のようなルールをもつ、1 人で行うゲームを考える。
 - [ルール] 袋から無作為に 1 枚ずつカードを取り出していく。ただし、一度取り出したカードは袋に戻さないものとする。取り出したカードの数字の合計がマジックナンバーになったとき、その時点で負けとし、それ以降はカードを取り出さない。途中で負けとなることなく、すべてのカードを取り出せたとき、勝ちとする。

以下の問いに答えよ。

- (1) 2枚のカードを取り出したところで負けとなる確率を求めよ。
- (2) 3枚のカードを取り出したところで負けとなる確率を求めよ。
- (3) このゲームで勝つ確率を求めよ。

[2011]

- 10 以下の問いに答えよ。
- (1) A, B の 2 人がそれぞれ,「石」,「はさみ」,「紙」の 3 種類の「手」から無作為に 1 つを選んで,双方の「手」によって勝敗を決める。「石」は「はさみ」に勝ち「紙」に負け,「はさみ」は「紙」に勝ち「石」に負け,「紙」は「石」に勝ち「はさみ」に負け,同じ「手」どうしは引き分けとする。A が B に勝つ確率と引き分ける確率を求めよ。
- (2) 上の3種類の「手」の勝敗規則を保ちつつ、これらに加えて、4種類目の「手」として「水」を加える。「水」は「石」と「はさみ」には勝つが「紙」には負け、同じ「手」どうしは引き分けとする。A, B がともに 4種類の「手」から無作為に1つを選ぶとするとき、A が勝つ確率と引き分けの確率を求めよ。
- (3) 上の 4 種類の「手」の勝敗規則を保ちつつ、これらに加え、さらに第 5 の「手」として「土」を加える。B が 5 種類の「手」から無作為に 1 つを選ぶとき、A の勝つ確率がA の選ぶ「手」によらないようにするためには、「土」と「石」「はさみ」「紙」「水」との勝敗規則をそれぞれどのように定めればよいか。ただし、同じ「手」どうしの場合、しかもその場合のみ引き分けとする。 [2009]
- **11** 次の問いに答えよ。
- (1) xy 平面において、円 $(x-a)^2 + (y-b)^2 = 2c^2$ と直線 y=x が共有点をもたないための a,b,c の条件を求めよ。ただし、a,b,c は定数で $c \neq 0$ とする。
- (2) 1個のサイコロを 3 回投げて出た目の数を、順にa, b, c とする。a, b, c が(1)で求めた条件を満たす確率を求めよ。 [2008]

- **12** 次の問いに答えよ。
- (1) 1, 2, 3 の 3 種類の数字から重複を許して 3 つ選ぶ。選ばれた数の和が 3 の倍数となる組合せをすべて求めよ。
- (2) 1の数字を書いたカードを 3 枚, 2 の数字を書いたカードを 3 枚, 3 の数字を書いたカードを 3 枚, 計 9 枚用意する。この中から無作為に, 一度に 3 枚のカードを選んだとき, カードに書かれた数の和が 3 の倍数となる確率を求めよ。 [2007]
- 13 次の問いに答えよ。
- (1) 方程式 $x^2 + y^2 + ax + by + 3c = 0$ が円を表すためのa, b, c の条件を求めよ。
- (2) 1 つのサイコロを 2 回振って出た目の数を、順に a, b とする。 c=1 とするとき、a, b の組が(1)の条件を満たす場合は何通りあるか。
- (3) 1 つのサイコロを 3 回振って出た目の数を、順にa, b, c とする。a, b, c が(1)の条件を満たす確率を求めよ。 [2002]
- **1** k, x, y, z を実数とする。k が以下の(1), (2), (3)のそれぞれの場合に、不等式 $x^2 + y^2 + z^2 + k(xy + yz + zx) \ge 0$

が成り立つことを示せ。また等号が成り立つのはどんな場合か。

- (1) k = 2
- (2) k = -1
- (3) -1 < k < 2 [2021]
- 2 以下の問いに答えよ。
- (1) 正の実数 x, y に対して, $\frac{y}{x} + \frac{x}{y} \ge 2$ が成り立つことを示し,等号が成立するための条件を求めよ。
- (2) n を自然数とする。n 個の正の実数 a_1 , …, a_n に対して $(a_1 + \dots + a_n) \left(\frac{1}{a_1} + \dots + \frac{1}{a_n} \right) \ge n^2$

が成り立つことを示し、等号が成立するための条件を求めよ。 [2012]

分野別問題と解答例

関 数/微分と積分/図形と式

図形と計量/ベクトル

整数と数列/確 率/論 証

問題

a, b を実数とする。整式 f(x) を $f(x) = x^2 + ax + b$ で定める。以下の問いに答えよ。

- (1) 2 次方程式 f(x) = 0 が異なる 2 つの正の解をもつための a と b がみたすべき必要十分条件を求めよ。
- (2) 2 次方程式 f(x) = 0 が異なる 2 つの実数解をもち、それらがともに-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab 平面上に図示せよ。
- (3) 2次方程式 f(x) = 0 の 2 つの解の実部がともに-1 より大きく, 0 より小さくなるような点(a, b) の存在する範囲を ab 平面上に図示せよ。ただし, 2 次方程式の重解は 2 つと数える。 [2023]

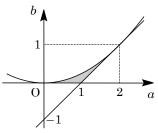
解答例+映像解説

- (1) $f(x) = x^2 + ax + b = \left(x + \frac{a}{2}\right)^2 \frac{a^2}{4} + b$ に対し、f(x) = 0 が異なる 2 つの正の解をもつ条件は、y = f(x) のグラフの頂点が $\left(-\frac{a}{2}, -\frac{a^2}{4} + b\right)$ であることに注意して、 $-\frac{a}{2} > 0$ 、 $-\frac{a^2}{4} + b < 0$ 、f(0) = b > 0 まとめると、a < 0 かつ $0 < b < \frac{a^2}{4}$ である。
- (2) f(x) = 0 が異なる 2 つの実数解をもち、それらがともに-1 より大きく、0 より小さくなる条件は、

$$-1<-rac{a}{2}<0$$
 , $-rac{a^2}{4}+b<0$, $f(-1)=1-a+b>0$, $f(0)=b>0$ まとめると, $0 かつ $0 かつ $b>a-1$ である。$$

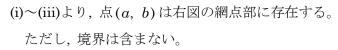
ここで、2 つの境界線 $b = \frac{a^2}{4}$ とb = a - 1 の関係は、連立すると $\frac{a^2}{4} = a - 1$ から $\frac{1}{4}(a - 2)^2 = 0$ となることより、a = 2 で接している。

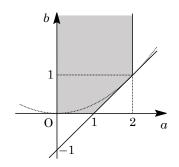
したがって、点(a, b)は右図の網点部に存在する。ただし、境界は含まない。



- (3) f(x) = 0 の 2 つの解の実部がともに-1 より大きく, 0 より小さくなる条件は,
 - (i) 異なる実数解をもつ $\left(b < \frac{a^2}{4}\right)$ とき
 - (2)より,0 < a < 2 かつ $0 < b < \frac{a^2}{4}$ かつ b > a 1 である。
 - (ii) 重解をもつ $\left(b = \frac{a^2}{4}\right)$ とき $-1 < -\frac{a}{2} < 0$ より,0 < a < 2 かつ $b = \frac{a^2}{4}$ である。

(iii) 虚数解をもつ
$$\left(b>\frac{a^2}{4}\right)$$
とき
$$mの実部は-\frac{a}{2} から-1<-\frac{a}{2}<0となり,$$
 $0 かつ $b>\frac{a^2}{4}$$





コメント

2 次方程式の解の配置の問題です。(3)では、問題文の「解の実部」という表現により、場合分けをしています。

問題

次の2つの条件を満たすxの2次式f(x)を考える。

(i)
$$y = f(x)$$
のグラフは点 $(1, 4)$ を通る

(ii)
$$\int_{-1}^{2} f(x) dx = 15$$

以下の問いに答えよ。

- (1) f(x)の1次の項の係数を求めよ。
- (2) 2 次方程式 f(x)=0 の 2 つの解を α , β とするとき, α と β の満たす関係式を求めよ。
- (3) (2)における α , β がともに正の整数となるような f(x)をすべて求めよ。 [2017]

解答例

(1)
$$f(x) = ax^2 + bx + c \ (a \neq 0)$$
 とおくと、条件(i)から、 $f(1) = 4$ なので、

$$a+b+c=4$$
 ······①

また,条件(ii)から,
$$\int_{-1}^{2} (ax^2 + bx + c) dx = 15$$
なので,

$$\frac{a}{3}(8+1) + \frac{b}{2}(4-1) + c(2+1) = 15, \ a + \frac{b}{2} + c = 5 \cdots 2$$

①②より
$$\frac{b}{2}$$
=-1となり、 b =-2……③から $f(x)$ の 1 次の項の係数は-2である。

ここで、
$$f(x) = 0$$
 の 2 つの解が α 、 β より、

$$\alpha + \beta = \frac{2}{\alpha} \cdots$$
 $\alpha \beta = \frac{6-\alpha}{\alpha} \cdots$

(3) ⑥を変形して、
$$(\alpha-3)(\beta-3) = 8 \cdots$$
 ⑦

ここで、
$$\alpha$$
、 β はともに正の整数なので、 $\alpha-3 \ge -2$ 、 $\beta-3 \ge -2$ となり、

$$(\alpha - 3, \beta - 3) = (1, 8), (2, 4), (4, 2), (8, 1)$$

よって,
$$(\alpha, \beta) = (4, 11)$$
, $(5, 7)$, $(7, 5)$, $(11, 4)$

(a)
$$(\alpha, \beta) = (4, 11), (11, 4) のとき$$

(b)
$$(\alpha, \beta) = (5, 7), (7, 5)$$
 のとき

(4)
$$\sharp \vartheta$$
, $a = \frac{2}{\alpha + \beta} = \frac{1}{6} \xi \sharp \vartheta$, $f(x) = \frac{1}{6}x^2 - 2x + \frac{35}{6}$

コメント

解と係数の関係を媒介にして作られた不定方程式を解く頻出問題です。

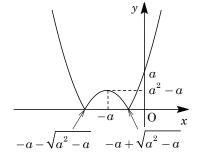
問題

a を正の定数とし、 $f(x) = |x^2 + 2ax + a|$ とおく。以下の問いに答えよ。

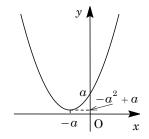
- (1) y = f(x)のグラフの概形をかけ。
- (2) y = f(x)のグラフが点(-1, 2)を通るときの a の値を求めよ。また、そのときの y = f(x)のグラフと x 軸で囲まれる図形の面積を求めよ。
- (3) a=2とする。すべての実数 x に対して $f(x) \ge 2x + b$ が成り立つような実数 b の とり得る値の範囲を求めよ。 [2016]

解答例

- (1) a > 0 のとき, $f(x) = |x^2 + 2ax + a| = |(x+a)^2 a^2 + a|$ に対して,
 - (i) $-a^2 + a < 0$ (a > 1) のとき $-a \sqrt{a^2 a} < x < -a + \sqrt{a^2 a}$ において, $f(x) = -x^2 2ax a = -(x + a)^2 + a^2 a$ $x \le -a \sqrt{a^2 a}$, $-a + \sqrt{a^2 a} \le x$ において, $f(x) = x^2 + 2ax + a = (x + a)^2 a^2 + a$ よって, y = f(x) のグラフは右図のようになる。



- (ii) $-a^2 + a \ge 0$ ($0 < a \le 1$) のとき $f(x) = x^2 + 2ax + a = (x+a)^2 a^2 + a$ よって、y = f(x) のグラフは右図のようになる。
- (2) y = f(x)のグラフが点(-1, 2)を通ることより, $2 = |1-2a+a|, |1-a|=2, 1-a=\pm 2$ a > 0から1-a=-2となり,a=3このとき,(1)の(i)の場合に対応し, $f(x) = |x^2+6x+3|$ そこで。 $\alpha = -3-\sqrt{6}$ $\beta = -3+\sqrt{6}$ とおくと y = f(x)

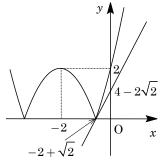


そこで、 $\alpha=-3-\sqrt{6}$ 、 $\beta=-3+\sqrt{6}$ とおくと、y=f(x) のグラフと x 軸で囲まれる図形の面積 S は、

$$S = \int_{\alpha}^{\beta} (-x^2 - 6x - 3) dx = -\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dx = \frac{1}{6} (\beta - \alpha)^3$$
$$= \frac{1}{6} (2\sqrt{6})^3 = 8\sqrt{6}$$

(3) a=2のとき、 $f(x)=|x^2+4x+2|$ となる。 さて、 $y=x^2+4x+2$ のグラフ上のx=tにおける接線の傾きが 2 とすると、y'=2x+4から、

$$2t+4=2\;,\;\;t=-1$$



神戸大学・文系 関数 (2001-2025)

すると、 $-1 < -2 + \sqrt{2}$ から、y = f(x) のグラフがつねに直線 y = 2x + b の上側にあり、しかも b の値が最大になるのは、上図の位置関係の場合である。

すなわち、すべての x に対して $f(x) \ge 2x + b$ が成り立つ b のとり得る値は、 $b \le 4 - 2\sqrt{2}$ である。

コメント

絶対値つきの関数のグラフについての基本問題です。(3)では、図だけで処理をするには微妙な感じでしたので、まず数式を用いて確認をしています。

問題

実数 a, b に対して, $f(x) = a(x-b)^2$ とおく。ただし, a は正とする。放物線 y = f(x) が直線 y = -4x + 4 に接している。このとき, 以下の問いに答えよ。

- (1) $b \in a$ を用いて表せ。
- (2) $0 \le x \le 2$ において、f(x) の最大値 M(a) と、最小値 m(a) を求めよ。
- (3) a が正の実数を動くとき、M(a)の最小値を求めよ。 [2010]

解答例

(1)
$$f(x) = a(x-b)^2$$
 に対して、 $y = f(x)$ と $y = -4x + 4$ を連立して、 $a(x-b)^2 = -4x + 4$ 、 $ax^2 - 2(ab-2)x + ab^2 - 4 = 0$ ……(*) 条件より、(*)が重解をもつので、 $D/4 = (ab-2)^2 - a(ab^2 - 4) = 0$ 、 $ab-a-1 = 0$ $a > 0$ より、 $b = \frac{a+1}{a}$

- (2) (1)より, $f(x) = a\left(x \frac{a+1}{a}\right)^2$ となり, a > 0 から, $\frac{a+1}{a} = 1 + \frac{1}{a} > 1$ である。 すると, $0 \le x \le 2$ における f(x) の最大値 M(a), 最小値 m(a) は,
 - (i) $1 + \frac{1}{a} \le 2$ $(a \ge 1)$ $\emptyset \ge 3$ $M(a) = f(0) = \frac{(a+1)^2}{a}, \quad m(a) = f\left(\frac{a+1}{a}\right) = 0$
 - (ii) $1 + \frac{1}{a} > 2 \ (0 < a < 1) \ \mathcal{O} \succeq \stackrel{*}{\rightleftharpoons}$ $M(a) = f(0) = \frac{(a+1)^2}{a}, \quad m(a) = f(2) = a \left(2 \frac{a+1}{a}\right)^2 = \frac{(a-1)^2}{a}$

(3) (2)より,
$$M(a) = \frac{(a+1)^2}{a} = a + \frac{1}{a} + 2 \ge 2 + 2 = 4$$
 等号が成立するのは, $a = \frac{1}{a}$ すなわち $a = 1$ のときである。 したがって, $M(a)$ の最小値は 4 である。

コメント

2次関数の最大・最小に関する基本問題です。