解答解説のページへ

自然数 n に対して、 $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ とおく。また、

$$n!! =$$

$$\begin{cases} n(n-2)(n-4) \cdots \cdots 5 \cdot 3 \cdot 1 & (n \text{ が奇数のとき}) \\ n(n-2)(n-4) \cdots \cdots 6 \cdot 4 \cdot 2 & (n \text{ が偶数のとき}) \end{cases}$$

とおく。次の問いに答えよ。

- (1) 1000!を素因数分解したときにあらわれる素因数3の個数を求めよ。
- (2) 1000!!を素因数分解したときにあらわれる素因数3の個数を求めよ。
- (3) 999!!を素因数分解したときにあらわれる素因数3の個数を求めよ。

解答解説のページへ

m, t を正の実数とし,mt>1 とする。xy 平面上に 2 点 A(1,0), B(0,t) をとる。 原点を O(0,0) とする。また,2 直線 $h:y=-\frac{1}{m}x+t$, $l_2:y=m(x-1)$ の交点を P とする。このとき次の問いに答えよ。

- (1) 点 P の座標を m と t を用いて表せ。
- (2) 三角形 OAP の外接円の直径をmとtを用いて表せ。
- (3) t を固定したとき、 \angle OPA の大きさは m によらず一定であることを示せ。

解答解説のページへ

p を正の実数, q を $-2p^3 < q < 2p^3$ をみたす実数とする。 $f(x) = x^3 - 3p^2x + q$ とおくとき、次の問いに答えよ。

- (1) x が実数全体を動くとき、f(x) が極値をとる x とそのときの極値をすべて求めよ。
- (2) 方程式f(x) = 0は相異なる3つの実数解をもつことを示せ。
- (3) (2)の3つの解は、すべて-2p < x < 2pをみたすことを示せ。
- (4) (2)の 3 つの解のうちの 1 つを $0<\theta<\pi$ である θ を用いて $2p\cos\theta$ と表したとき, $2p\cos\left(\theta+\frac{2\pi}{3}\right)$, $2p\cos\left(\theta+\frac{4\pi}{3}\right)$ も解となることを示せ。

解答解説のページへ

0 < k < 1 とする。平面上の凸四角形 ABCD に対して、点 P, Q, R, S を関係式 $\overrightarrow{AP} = k\overrightarrow{AB}$, $\overrightarrow{BQ} = k\overrightarrow{BC}$, $\overrightarrow{CR} = k\overrightarrow{CD}$, $\overrightarrow{DS} = k\overrightarrow{DA}$ によって定めるとき、次の問いに答えよ。

- (1) 原点を O とする。等式 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} + \overrightarrow{OS}$ が成り立つ ことを示せ。
- (2) 比の値 $\frac{($ 六角形PBQRDSの面積 $)}{(四角形<math>ABCD$ の面積 $)}$ を k を用いて表せ。
- (3) 比の値 $\frac{(四角形 PQRSの面積)}{(四角形 ABCDの面積)}$ を k を用いて表せ。
- (4) 0 < k < 1 の範囲で k を動かすとき、(3)の比の値の最小値とそのときの k を求めよ。

問題のページへ

(1) 1 から 1000 までの自然数のうち、3 の倍数の個数を n_1 、 $3^2 = 9$ の倍数の個数を n_2 、 $3^3 = 27$ の倍数の個数を n_3 、 $3^4 = 81$ の倍数の個数を n_4 、 $3^5 = 243$ の倍数の個数を n_5 、 $3^6 = 729$ の倍数の個数を n_6 とする。

このとき、1000!を素因数分解したときにあらわれる素因数3の個数 N_1 は、

$$N_{1} = n_{1} + n_{2} + n_{3} + n_{4} + n_{5} + n_{6}$$

$$= \left[\frac{1000}{3}\right] + \left[\frac{1000}{9}\right] + \left[\frac{1000}{27}\right] + \left[\frac{1000}{81}\right] + \left[\frac{1000}{243}\right] + \left[\frac{1000}{729}\right]$$

$$= 333 + 111 + 37 + 12 + 4 + 1 = 498$$

(2) $1000!! = 2^{500} \times 500!$ なので、1000!!を素因数分解したときにあらわれる素因数 3 の個数 N_2 は、(1)と同様にして、

$$\begin{split} N_2 = & \left[\frac{500}{3} \right] + \left[\frac{500}{9} \right] + \left[\frac{500}{27} \right] + \left[\frac{500}{81} \right] + \left[\frac{500}{243} \right] \\ = & 166 + 55 + 18 + 6 + 2 = 247 \end{split}$$

(3) $1000!=1000!!\times999!!$ なので、999!!を素因数分解したときにあらわれる素因数 3 の個数 N_3 は、

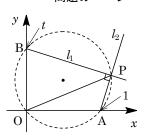
$$N_3 = N_1 - N_2 = 498 - 247 = 251$$

「解説]

素因数の個数についての有名問題です。ガウス記号を使用すると, すっきりと示せます。

問題のページへ

(1)
$$m > 0$$
, $t > 0$, $mt > 1$ のとき, $l_1 : y = -\frac{1}{m}x + t$ ……①, $l_2 : y = m(x-1)$ ……②を連立して, $-\frac{1}{m}x + t = m(x-1)$, $\left(m + \frac{1}{m}\right)x = m + t$ すると, $x = \frac{m(m+t)}{m^2 + 1}$ となり, ①から, $y = -\frac{1}{m} \cdot \frac{m(m+t)}{m^2 + 1} + t = \frac{m(mt-1)}{m^2 + 1}$



よって、 $l_1 \ge l_2$ の交点 P の座標は、 $P\left(\frac{m(m+t)}{m^2+1}, \frac{m(mt-1)}{m^2+1}\right)$ である。

(2) l_1 と l_2 は点 P で垂直に交わるので、 $\angle AOB + \angle APB = 180^\circ$ となり、四角形 OAPB は円に内接する。

この円が \triangle OAP の外接円となるので、その直径は $AB = \sqrt{t^2 + 1}$ である。

(3) t を固定したとき、(2)から \triangle OAP の外接円の大きさは一定となる。 しかも、点 P は第 1 象限内に存在し、OA = 1 から、円周角 \angle OPA の大きさは m によらず一定である。

「解説]

円と直線についての基本題です。(2)と(3)の解答例は、もう少し詳しく記した方がよかったかもしれません。

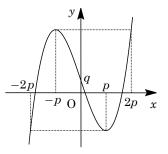
問題のページへ

(1) $f(x) = x^3 - 3p^2x + q \ (p > 0)$ に対して、 $f'(x) = 3x^2 - 3p^2 = 3(x+p)(x-p)$ すると、f(x) の増減は右表のようになる。これより、f(x) は x = -p のとき極大値

\boldsymbol{x}		-p		p	
f'(x)	+	0	ı	0	+
f(x)	7		\		7

 $f(-p) = 2p^3 + q$, x = p のとき極小値 $f(p) = -2p^3 + q$ をとる。

- (2) $-2p^3 < q < 2p^3$ より、 $f(-p) = 2p^3 + q > 0$ 、 $f(p) = -2p^3 + q < 0$ となるので、y = f(x) のグラフはx 軸と 3 個の交点をもつ。 よって、方程式 f(x) = 0 は相異なる 3 つの実数解をもつ。
- (3) $f(-2p) = -2p^3 + q < 0$, $f(2p) = 2p^3 + q > 0$ より, y = f(x)のグラフと x 軸の 3 個の交点は, 3 つの区間 -2p < x < -p, -p < x < p, p < x < 2p に 1 つずつある。 すなわち, f(x) = 0 の 3 つの解は, すべて -2p < x < 2p をみたしている。



(4) f(x) = 0 の 1 つの解が $x = 2p\cos\theta (0 < \theta < \pi)$ のとき、 $f(2p\cos\theta) = 0$ から、

$$8p^{3}\cos^{3}\theta - 6p^{3}\cos\theta + q = 0$$
, $2p^{3}(4\cos^{3}\theta - 3\cos\theta) + q = 0$

$$3$$
倍角の公式より, $2p^3\cos 3\theta + q = 0$ となり,このとき,

$$f\left(2p\cos\left(\theta + \frac{2\pi}{3}\right)\right) = 2p^3\cos3\left(\theta + \frac{2\pi}{3}\right) + q = 2p^3\cos(3\theta + 2\pi) + q$$
$$= 2p^3\cos3\theta + q = 0$$

$$\begin{split} f\Big(\,2p\cos\!\Big(\,\theta+\frac{4\pi}{3}\,\Big)\,\Big) &= 2p^3\cos3\Big(\,\theta+\frac{4\pi}{3}\,\Big) + q = 2p^3\cos(3\theta+4\pi) + q \\ &= 2p^3\cos3\theta + q = 0 \end{split}$$

よって、
$$2p\cos\left(\theta + \frac{2\pi}{3}\right)$$
、 $2p\cos\left(\theta + \frac{4\pi}{3}\right)$ も $f(x) = 0$ の解となる。

[解 説]

(3)までは、微分と増減についての超頻出問題です。(4)については、3 倍角の公式に気付くだけです。

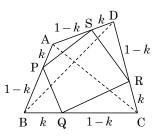
問題のページへ

(1)
$$0 < k < 1$$
 として、四角形 ABCD に対し、 $\overrightarrow{AP} = k\overrightarrow{AB}$ 、 $\overrightarrow{BQ} = k\overrightarrow{BC}$ 、 $\overrightarrow{CR} = k\overrightarrow{CD}$ 、 $\overrightarrow{DS} = k\overrightarrow{DA}$ のとき、 $(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} + \overrightarrow{OS}) - (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$

$$= \overrightarrow{OP} - \overrightarrow{OA} + \overrightarrow{OQ} - \overrightarrow{OB} + \overrightarrow{OR} - \overrightarrow{OC} + \overrightarrow{OS} - \overrightarrow{OD}$$

$$= \overrightarrow{AP} + \overrightarrow{BQ} + \overrightarrow{CR} + \overrightarrow{DA}$$

$$= k(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}) = \vec{0}$$



よって、 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} + \overrightarrow{OS}$ が成り立つ。

(2) $\triangle APS = k(1-k)\triangle ABD$, $\triangle CRQ = k(1-k)\triangle CDB$ から, 四角形 ABCD の面積 を S_0 とおくと,

(六角形 PBQRDSの面積) =
$$S_0$$
 - \triangle APS - \triangle CRQ
= S_0 - $k(1-k)\triangle$ ABD - $k(1-k)\triangle$ CDB
= S_0 - $k(1-k)(\triangle$ ABD + \triangle CDB)
= $\{1-k(1-k)\}S_0$ = $(k^2-k+1)S_0$

よって、 $\frac{(六角形 PBQRDSの面積)}{(四角形 ABCDの面積)} = k^2 - k + 1$

(3) $\triangle BQP = k(1-k)\triangle BCA$, $\triangle DSR = k(1-k)\triangle DAC$ から, (四角形 PQRSの面積) = (六角形 PBQRDSの面積) - $\triangle BQP$ - $\triangle DSR$ = $(k^2 - k + 1)S_0 - k(1-k)\triangle BCA - k(1-k)\triangle DAC$ = $\{(k^2 - k + 1) - k(1-k)\}S_0 = (2k^2 - 2k + 1)S_0$ よって, $\frac{(四角形 PQRSの面積)}{(四角形 ABCDの面積)} = 2k^2 - 2k + 1$

(4) (3)の比の値を R とおくと, $R = 2k^2 - 2k + 1 = 2\left(k - \frac{1}{2}\right)^2 + \frac{1}{2}$ k を 0 < k < 1 の範囲で動かすとき,R は $k = \frac{1}{2}$ のとき最小値 $\frac{1}{2}$ をとる。

[解 説]

平面ベクトルが題材ですが, 内容的には, 三角形の面積比の問題です。